about-3 back-contact back-deep eitaa کانال روبیکاخبرگزاری سایبربان
مطالب پربازدید
جایزه
1404/03/25 - 08:09- تروریسم سایبری

جایزه 10 میلیون دلاری برای گروه هکری نجات دهنده سامانه‌های پدافندی

ایالات متحده اخیراً با اعلام بیانیه‌ای از تعیین جایزه 10 میلیون دلاری برای مرموزترین دشمن سایبری خود به نام مِستر سول خبر داد.

اعتراف
1404/03/28 - 09:08- تروریسم سایبری

اعتراف منابع صهیونیستی به نفوذ سایبری ایران در پخش تصاویر پشت‌پرده

منابع صهیونیستی به نفوذ سایبری ایران در پخش تصاویر پشت‌پرده اعتراف کردند.

حمله
1404/03/27 - 20:40- آسیا

حمله سایبری به بانک سپه

هکرهای گنجشک درنده(گروهی منتسب به آمریکا) مدعی حمله سایبری به بانک سپه شدند.

روش رادیومیک سی‌تی (CT) مبتنی بر یادگیری ماشینی برای پیش‌بینی مدت بستری در بیمارستان برای بیماران دارای عفونت‌های ریوی «SARS-CoV-2» استفاده می‎شود.

به گزارش کارگروه فناوری اطلاعات سایبربان؛ روش رادیومیک سی‌تی (CT) مبتنی بر یادگیری ماشینی برای پیش‌بینی مدت اقامت در بیمارستان برای بیماران دارای عفونت‌های ریوی «SARS-CoV-2» استفاده می‎شود. در این خصوص آن ترانسل مِد (Ann Transl Med) مقاله‌ای نوشته که به شرح زیر است :

چکیده

پیش‌زمینه : بیماری کووید-19، ویروس کرونا، از دسامبر سال گذشته به یک چالش جهانی تبدیل شده است؛ بستری در بیمارستان یکی از شاخص‌های اصلی برای بررسی بیماری است و مدل پیش‌بینی آن بر اساس ویژگی‌های رادیومیک سی‌تی برای ارزیابی نتیجه بالینی بیماران مهم است. هدف این مطالعه، توسعه و آزمایش مدل‌های رادیومیک سی‌تی مبتنی بر یادگیری ماشینی برای پیش‌بینی مدت زمان بستری در بیمارستان مربوط به بیماران مبتلا به عفونت‌های ریوی بیماری کووید-19 است.

روش‌ها : این مطالعه با نگاهی به گذشته، بیماران مبتلا به عفونت SARS-CoV-2 تأیید شده آزمایشگاهی و تصاویر CT اولیه آنها از 5 بیمارستان تعیین شده در آنكانگ (Ankang)، لیشوی (Lishui)، لانژو (Lanzhou)، لینكشیا (Linxia) و ژنجیانگ (Zhenjiang) بین 23 ژانویه تا 8 فوریه 2020 را بررسی می‌کند.

بیماران در دسته‌های کوتاه‌مدت (کمتر از 10 روز) و بلندمدت (بیش از 10 روز) بستری در بیمارستان طبقه‌بندی می‌شوند؛ مدل‌های رادیومیک سی‌تی مبتنی بر بازگشت لجستیک (LR) و جنگل تصادفی (RF) براساس ویژگی‌های ضایعات ریوی در 4 مرکز اول توسعه داده شدند. عملکرد پیش‌بینی در مرکز پنجم (مجموعه داده‌های آزمایش) در سطح لوب و بیماران ریه ارزیابی شد.

نتایج : در مجموع، 52 بیمار از بیمارستان‌های معین مورد بررسی قرار گرفتند؛ از 20 فوریه امسال، 21 بیمار در بیمارستان بستری بودند یا هیچ موردی در سی‌تی آنها یافت نشد. بنابراین، 31 بیمار با 72 بخش ضایعه تجزیه و تحلیل شدند. مدل‌های رادیومیک سی‌تی براساس 6 ویژگی مرتبه دوم در تشخیص بستری‌های کوتاه و بلند مدت بیماران مبتلا به کووید-19 با مناطقی با نمودارهای 0.97 (98 درصد CI, 0.83-1.0) و 0.92 (95 درصد CI, 0.67-1.0) به ترتیب با LR و RF مؤثر بودند. این 2 مدل حساسيت و ويژگی 1.0 و 89/0، 75/0 و 1.0 در آزمون را نشان دادند. از 28 فوریه سال جاری، 6 بیمار مرخص شده با استفاده از مدل‌های RF و LR به‌طور صحیح به عنوان بستری طولانی مدت تشخیص داده شدند.

نتیجه‌گیری : ویژگی‌ها و مدل‌های رادیومیک سی‌تی مبتنی بر یادگیری ماشینی، امکان‌سنجی و دقت را برای پیش‌بینی بستری در بیمارستان برای بیماران مبتلا به بیماری کووید-19 نشان دادند.

منبع:

تازه ترین ها
تصمیم‌گیری
1404/05/30 - 11:03- آسیا

تصمیم‌گیری درباره جریمه اس کی تلکام

نهاد ناظر حفاظت از داده‌ها روز پنجشنبه اعلام کرد هفته آینده جلسه‌ای عمومی برگزار خواهد کرد تا درباره اعمال جریمه علیه شرکت اس کی تلکام به‌دلیل یک نقض امنیتی بزرگ که ده‌ها میلیون مشتری را تحت تأثیر قرار داده است، تصمیم‌گیری کند.

محدودیت
1404/05/30 - 10:34- آسیب پذیری

محدودیت دسترسی شرکت‌های چینی توسط مایکروسافت

مایکروسافت اعلام کرد که دسترسی برخی شرکت‌های چینی به سیستم هشدار زودهنگام خود برای آسیب‌پذیری‌های امنیت سایبری را محدود کرده است.

اتهام
1404/05/30 - 10:24- جرم سایبری

اتهام به جوان آمریکایی در پرونده رپربات

وزارت دادگستری ایالات متحده اعلام کرد یک مرد ۲۲ ساله اهل اورگن به اتهام راه‌اندازی یک سرویس قدرتمند بات‌نت اجاره‌ای که برای انجام صدها هزار حمله سایبری در سراسر جهان استفاده شده است، تحت پیگرد قضایی قرار گرفته است.

مطالب مرتبط

در این بخش مطالبی که از نظر دسته بندی و تگ بندی مرتبط با محتوای جاری می باشند نمایش داده می‌شوند.